Lecture 8

Red-Black Trees: Deletion (contd.), Augmenting Trees
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Fixing Violation of Only Property 5

Process can terminate

Case 2: x's sibling w is black, and both of w’s children are black. if B is root or was Red earlier
\ |/
new X
Ly — X
o D a p
4 0 € W 4 0 € W

Handling: Move “extra blackness” ot x and blackness ot w to their parent.
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Case 3: x's sibling w is black, and w’s left child is red, and w’s right child is black.
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Handling: Switch colour of w and its left child and then perform a right rotation on w.

new w
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Case 4: x's sibling w is black, and w's right child is red.
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Handling: Give w the colour of x’s parent. Make x’s parent and w's right child black.

Perform left rotation at x's parent.
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Defn: In a set, rank of an element is its position in the sorted order (w.r.t. keys) ot the set.

Example: Let S = {10,5,15,20,8,25,40,30} be a set.
Elements with ranks 1, 3, and 8 are 5, 10, and 40, respectively.

Ranks of elements 5, 15, and 25, are 1, 4, and 6, respectively.
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Facilitating New Operations

Suppose we want to maintain a dynamic set with the following operations:

® Find the element of the ith rank.

® Given an element find its rank in the set.

Should we learn or invent a new data structure to facilitate these operations?

No. An easy modification to RB-trees is enough.
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X
Nodes are represented as —, where x is the key, and y is number of internal nodes in the subtree

y . . .
rooted at that node. For a node z, number of internal nodes in the subtree(z) = 7. size.
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Finding the Element with ith Rank

Recall that rank of an element is its position in the sorted order (w.r.t. keys) of the set.
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It's the same as finding the

15th element inthe ————ooo oL 3
inorder-traversal of this tree
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Find the 1st element
in the inorder-traversal
of this subtree




Finding the Element with ith Rank

Got it! The element
with 15th rank.




