Lecture 8

Red-Black Trees: Deletion (contd.), Augmenting Trees

Fixing Violation of Only Property 5

Fixing Violation of Only Property 5

Case 1: x's sibling w is red.

Fixing Violation of Only Property 5

Case 1: x's sibling w is red.

Fixing Violation of Only Property 5

Case 1: x's sibling w is red.

Handling: Switch colours ot w and x . p and perform a left rotation at x . p.

Fixing Violation of Only Property 5

Case 1: x's sibling w is red.

Handling: Switch colours ot w and x . p and perform a left rotation at x . p.

Fixing Violation of Only Property 5

Case 1: x's sibling w is red.

Handling: Switch colours ot w and x . p and perform a left rotation at x . p.

Fixing Violation of Only Property 5

Fixing Violation of Only Property 5

Case 2: x's sibling w is black, and both of w’s children are black.

Fixing Violation of Only Property 5

Case 2: x's sibling w is black, and both of w’s children are black.

Fixing Violation of Only Property 5

Case 2: x's sibling w is black, and both of w’s children are black.

y 0 € 1/

Handling: Move “extra blackness” ot x and blackness ot w to their parent.

Fixing Violation of Only Property 5

Case 2: x's sibling w is black, and both of w’s children are black.

Handling: Move “extra blackness” ot x and blackness ot w to their parent.

Fixing Violation of Only Property 5

Case 2: x's sibling w is black, and both of w’s children are black.

new x

Handling: Move “extra blackness” ot x and blackness ot w to their parent.

Fixing Violation of Only Property 5

Process can terminate

Case 2: x's sibling w is black, and both of w’s children are black. if B is root or was Red earlier
\ |/
new X
Ly — X
o D a p
4 0 € W 4 0 € W

Handling: Move “extra blackness” ot x and blackness ot w to their parent.

Fixing Violation of Only Property 5

Fixing Violation of Only Property 5

Case 3: x's sibling w is black, and w’s left child is red, and w’s right child is black.

Fixing Violation of Only Property 5

Case 3: x's sibling w is black, and w’s left child is red, and w’s right child is black.

Fixing Violation of Only Property 5

Case 3: x's sibling w is black, and w’s left child is red, and w’s right child is black.

Handling: Switch colour of w and its left child and then perform a right rotation on w.

Fixing Violation of Only Property 5

Case 3: x's sibling w is black, and w’s left child is red, and w’s right child is black.

Handling: Switch colour of w and its left child and then perform a right rotation on w.

Fixing Violation of Only Property 5

Case 3: x's sibling w is black, and w’s left child is red, and w’s right child is black.

| |
o o — e
o D O 0 p Y
14 0 € W
€ W

Handling: Switch colour of w and its left child and then perform a right rotation on w.

new w

Fixing Violation of Only Property 5

Fixing Violation of Only Property 5

Case 4: x's sibling w is black, and w's right child is red.

Fixing Violation of Only Property 5

Case 4: x's sibling w is black, and w's right child is red.

Fixing Violation of Only Property 5

Case 4: x's sibling w is black, and w's right child is red.

Handling: Give w the colour of x’s parent. Make x’s parent and w's right child black.

Fixing Violation of Only Property 5

Case 4: x's sibling w is black, and w's right child is red.

O
V2N
14 0

2 ' 4

Handling: Give w the colour of x’s parent. Make x’s parent and w's right child black.

Perform left rotation at x's parent.

Fixing Violation of Only Property 5

Case 4: x's sibling w is black, and w's right child is red.

)ﬂ\/

|
O
V2N
14 0

 ——

2 ' 4

Handling: Give w the colour of x’s parent. Make x’s parent and w's right child black.

Perform left rotation at x's parent.

Fixing Violation of Only Property 5

Case 4: x's sibling w is black, and w's right child is red.

PN Vs
y 5 € W o 5y 5

Handling: Give w the colour of x’s parent. Make x’s parent and w's right child black.

Perform left rotation at x's parent.

Facilitating New Operations

Facilitating New Operations

Defn: In a set, rank of an element is its position in the sorted order (w.r.t. keys) ot the set.

Facilitating New Operations

Defn: In a set, rank of an element is its position in the sorted order (w.r.t. keys) ot the set.

Example: Let S = {10,5,15,20,8,25,40,30} be a set.

Facilitating New Operations

Defn: In a set, rank of an element is its position in the sorted order (w.r.t. keys) ot the set.

Example: Let S = {10,5,15,20,8,25,40,30} be a set.

Elements with ranks 1, 3, and 8 are 5, 10, and 40, respectively.

Facilitating New Operations

Defn: In a set, rank of an element is its position in the sorted order (w.r.t. keys) ot the set.

Example: Let S = {10,5,15,20,8,25,40,30} be a set.
Elements with ranks 1, 3, and 8 are 5, 10, and 40, respectively.

Ranks of elements 5, 15, and 25, are 1, 4, and 6, respectively.

Facilitating New Operations

Facilitating New Operations

Suppose we want to maintain a dynamic set with the following operations:

Facilitating New Operations

Suppose we want to maintain a dynamic set with the following operations:

® Find the element of the ith rank.

Facilitating New Operations

Suppose we want to maintain a dynamic set with the following operations:

® Find the element of the ith rank.

® Given an element find its rank in the set.

Facilitating New Operations

Suppose we want to maintain a dynamic set with the following operations:

® Find the element of the ith rank.

® Given an element find its rank in the set.

Should we learn or invent a new data structure to facilitate these operations?

Facilitating New Operations

Suppose we want to maintain a dynamic set with the following operations:

® Find the element of the ith rank.

® Given an element find its rank in the set.

Should we learn or invent a new data structure to facilitate these operations?

No. An easy modification to RB-trees is enough.

A Minor Modification to RB-Tree

—very node also stores the number of internal nodes in the subtree rooted at that node.

A Minor Modification to RB-Tree

—very node also stores the number of internal nodes in the subtree rooted at that node.

A Minor Modification to RB-Tree

—very node also stores the number of internal nodes in the subtree rooted at that node.

A Minor Modification to RB-Tree

—very node also stores the number of internal nodes in the subtree rooted at that node.

A Minor Modification to RB-Tree

X

Nodes are represented as —, where x is the key, and y is number of internal nodes in the subtree
Y

A Minor Modification to RB-Tree

X

Nodes are represented as —, where x is the key, and y is number of internal nodes in the subtree
Y

rooted at that node.

A Minor Modification to RB-Tree

X
Nodes are represented as —, where x is the key, and y is number of internal nodes in the subtree

y . . .
rooted at that node. For a node z, number of internal nodes in the subtree(z) = 7. size.

20

20 9

Finding the Element with ith Rank

Recall that rank of an element is its position in the sorted order (w.r.t. keys) of the set.

Finding the Element with ith Rank

Finding the Element with ith Rank

Example: Find an element with 15th rank in the below set or RB-tree.

Finding the Element with ith Rank

Example: Find an element with 15th rank in the below set or RB-tree.

Finding the Element with ith Rank

Find the element with

15th rank in this tree ~— ———nngy

Finding the Element with ith Rank

It's the same as finding the

15th element inthe ————ooo oL 3
inorder-traversal of this tree

17
11

Finding the Element with ith Rank

Find the 3rd element in the
inorder-traversal of this subtree

Finding the Element with ith Rank

Find the 3rd element in the
inorder-traversal of this subtree

Finding the Element with ith Rank

Find the 1st element
in the inorder-traversal
of this subtree

Finding the Element with ith Rank

Find the 1st element
in the inorder-traversal
of this subtree

Finding the Element with ith Rank

Got it! The element
with 15th rank.

